Unitary representations of real reductive groups
نویسندگان
چکیده
— We present an algorithm for computing the irreducible unitary representations of a real reductive group G. The Langlands classification, as formulated by Knapp and Zuckerman, exhibits any representation with an invariant Hermitian form as a deformation of a unitary representation from the Plancherel formula. The behavior of these deformations was in part determined in the Kazhdan-Lusztig analysis of irreducible characters; more complete information comes from the Beilinson-Bernstein proof of the Jantzen conjectures. Our algorithm traces the signature of the form through this deformation, counting changes at reducibility points. An important tool is Weyl’s “unitary trick:” replacing the classical invariant Hermitian form (where Lie(G) acts by skew-adjoint operators) by a new one (where a compact form of Lie(G) acts by skew-adjoint operators). Résumé (Représentations unitaires des groupes de Lie réductifs) Nous présentons un algorithme pour le calcul des représentations unitaires irréductibles d’un groupe de Lie réductif réel G. La classification de Langlands, dans sa formulation par Knapp et Zuckerman, présente toute représentation hermitienne comme étant la déformation d’une représentation unitaire intervenant dans la formule de Plancherel. Le comportement de ces déformations est en partie déterminé par l’analyse de Kazhdan-Lusztig des caractères irréductibles; une information plus complète provient de la preuve par Beilinson-Bernstein des conjectures de Jantzen. Notre algorithme trace à travers cette déformation les changements de la signature de la forme qui peuvent intervenir aux points de réductibilité. Un outil important est “l’astuce unitaire” de Weyl: on remplace la forme hermitienne classique (pour laquelle Lie(G) agit par des opérateurs antisymétriques) par une forme hermitienne nouvelle (pour laquelle c’est une forme compacte de Lie(G) qui agit par des opérateurs antisymétriques). 2000 Mathematics Subject Classification. — 22E46, 20G05, 17B15.
منابع مشابه
Some bounds on unitary duals of classical groups - non-archimeden case
We first give bounds for domains where the unitarizabile subquotients can show up in the parabolically induced representations of classical $p$-adic groups. Roughly, they can show up only if the central character of the inducing irreducible cuspidal representation is dominated by the square root of the modular character of the minimal parabolic subgroup. For unitarizable subquotients...
متن کاملExamples of the Atlas of Lie Groups and Representations
The Atlas of Lie Groups and Representations is a project in representation theory of real reductive groups. The main goal of the atlas computer software, currently under development, is to compute the unitary dual of any real reductive Lie group G. As a step in this direction it currently computes the admissible representations of G. The underlying mathematics of the software is described in Al...
متن کاملAn External Approach to Unitary Representations
The principal ideas of harmonic analysis on a locally compact group G which is not necessarily compact or commutative were developed in the 1940s and early 1950s. In this theory, the role of the classical fundamental harmonics is played by the irreducible unitary representations of G. The set of all equivalence classes of such representations is denoted by Ĝ and is called the dual object of G o...
متن کاملSmall Principal Series and Exceptional Duality for Two Simply Laced Exceptional Groups
We use the notion of rank defined in an earlier paper (2007) to introduce and study two correspondences between small irreducible unitary representations of the split real simple Lie groups of types En, where n ∈ {6, 7}, and two reductive classical groups. We show that these correspondences classify all of the unitary representations of rank two (in the sense of our earlier paper) of these exce...
متن کاملThe Orbit Method for the Jacobi Group
g∗ −→ g, λ 7→ Xλ characterized by λ(Y ) =< Xλ, Y >, Y ∈ g. Therefore the coadjoint G-orbits in g∗ may be identified with adjoint G-orbits in g. The philosophy of the orbit method says that we may attach the irreducible unitary representations of G to the coadjoint orbits in g∗. Historically the orbit method that was first initiated by A.A. Kirillov (cf. [K]) early in the 1960s in a real nilpote...
متن کاملIsolated Unitary Representations
In this paper we collect some facts about the topology on the space of irreducible unitary representations of a real reductive group. The main goal is Theorem 10, which asserts that most of the “cohomological” unitary representations for real reductive groups (see [VZ]) are isolated. Many of the intermediate results can be extended to groups over any local field, but we will discuss these gener...
متن کامل